Математика подобна мясорубке, она может
переработать любое мясо, но для того, чтобы
получить хорошие котлеты, нужно и хорошее мясо.
Один воин вышел из города и проходил по 12 верст в день, а другой вышел одновременно и шел так: в первый день прошел 1 версту, во второй день 2 версты, в третий день 3 версты, в четвертый 4 версты, в пятый 5 верст и так прибавлял каждый день по версте, пока не настиг первого. Через сколько дней второй воин настигнет первого?
Старинная задача
Основные понятия теории очередей
Многие экономические задачи связаны с системами массового обслуживания , в которых происходит удовлетворение требований на выполнение каких–либо услуг.
Исследованием систем массового обслуживания занимается теория очередей, на начальное развитие которой оказали особое влияние труды датского ученого Эрланга А.К. (1878–1929) в области проектирования и эксплуатации телефонных станций.
Общая схема системы массового обслуживания показана на рис. 11.1.
Требование на обслуживание (например, неисправный автомобиль) поступает в обслуживающую систему (автомастерскую). Если есть свободные каналы обслуживания (мастера), то требование выполняется. Если все каналы заняты, то требование ставится в очередь по определенным правилам или покидает систему не обслуженным.
Основная задача теории массового обслуживания сводится к определению оптимального соотношения между входным потоком требований и числом обслуживающих каналов, при котором общие суммарные затраты минимальны.
Общие суммарные затраты складываются из затрат обслуживания и затрат ожидания, причем по мере увеличения сервиса затраты обслуживания увеличиваются, а затраты ожидания уменьшаются.
Систему массового обслуживания можно описать, задавая следующие ее компоненты: входной поток требований, дисциплину очереди и механизм обслуживания.
Входной поток требований характеризуется вероятностным законом распределения моментов поступления требований в систему и количеством требований в каждом поступлении.
В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких задач теории очередей, в которых поток требований является простейшим (пуассоновским) .
Простейший поток событий обладает тремя свойствами:
- стационарностью – постоянным количеством событий в единицу времени;
- отсутствием последействия – независимостью количества событий после любого момента времени от количества событий до него;
- ординарностью – практической невозможностью одновременного поступления нескольких требований.
Для простейшего потока частота наступления событий подчиняется закону Пуассона, то есть вероятность того, что за время t произойдет k событий определится
где l – количество событий в единицу времени (интенсивность потока).
Вероятность выхода из строя одной установки (k = 1) при отказе в среднем в единицу времени двух установок (l = 2)
Вероятность отсутствия вышедших из строя установок за любой случайный час – 13%, вероятность выхода из строя одной установки – 27%, двух – 27%, трех – 18%, четырех – 9% и т.д. (рис. 1.2).
Рис. 10.2. Распределение Пуассона для l = 2
По теореме сложения вероятностей вероятность суммы независимых событий равна сумме вероятностей этих событий, отсюда вероятность отказа в единицу времени не более четырех установок равна сумме вероятности отсутствия отказа и вероятностей отказа одной, двух, трех, четырех установок:
Вероятность отказа более четырех установок
P (m >4) = 1– 0,945 = 0,055.
Дисциплина очереди описывает порядок обслуживания требований в системе. Длина очереди может быть ограниченной или неограниченной. Правила постановки в очередь: FIFO – «первым пришел первым обслуживаешься», LIFO – «последним пришел первым обслуживаешься», по другим приоритетам или случайно.
Механизм обслуживания характеризуется продолжительностью процедур обслуживания и количеством одновременно обслуживаемых требований.
Время обслуживания требований в системе является случайной величиной и обычно описывается экспоненциальным законом распределения , то есть распределение длительности оставшейся части работ по обслуживанию не зависит от того, сколько оно уже продолжалось.
Вероятность того, что время обслуживания не превосходит некоторой величины t , определяется формулой:
где m – величина, обратная среднему времени обслуживания:
Введем в рассмотрение параметр a – коэффициент загрузки системы или среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступающие требования:
где l – среднее число требований, поступающих в единицу времени; m – среднее число требований, удовлетворяемых в единицу времени; Т обс – среднее время обслуживания одним каналом одного требования.
Заметим, что если a меньше количества каналов обслуживания, то очередь не может расти безгранично, то есть число обслуживающих каналов должно быть больше среднего числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требования.
Различают следующие виды систем массового обслуживания.
В зависимости от условий ожидания требованием начала обслуживания различают системы массового обслуживания с отказами и с ожиданием.
В системах с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и утрачиваются.
В системах с ожиданием требование, застав все обслуживающие каналы занятыми, ставится на очередь вплоть до освобождения любого из каналов.
Системы, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ожиданием и ограниченной длиной очереди .
Системы, допускающие очередь, но с ограниченным сроком пребывания каждого требования в ней, называются системами с ограниченным временем ожидания .
Системы массового обслуживания, допускающие очередь, но с ограниченным числом циркулирующих в системе требований, называются системами с ограниченным потоком требований .
По числу каналов обслуживания различают одноканальные и многоканальные системы .
По числу фаз обслуживания – однофазные и многофазные (последовательная обработка требований на нескольких каналах).
Ожидание того или иного вида обслуживания является частью нашей повседневной жизни. Мы ожидаем, чтобы пообедать в ресторане, мы стоим в очереди к кассам в магазинах и выстраиваемся в очередь в почтовых отделениях. Очередь возникает практически во всех присутственных местах: налоговых инспекциях, паспортных столах, страховых компаниях и пр. Феномен ожидания характерен не только для людей: работы, поставленные в очередь для выполнения; группа пассажирских самолетов, ожидающих разрешения на посадку в аэропорту; автомобили, движение которых приостановлено сигналом светофора на пути их следования, грузовые суда, ожидающие погрузки/разгрузки в порту, и т.п.
Изучение очередей в системах массового обслуживания (СМО) озволяет определить критерии функционирования обслуживающей системы, среди которых наиболее значимыми являются среднее время ожидания в очереди и средняя длина очереди. Эта информация используется затем для выбора надлежащего уровня обслуживания, что продемонстрировано в следующем примере.
Пример 2.6.1. Физические лица, сдающие декларацию о доходах, жалуются на медленное обслуживание. В настоящее время в данном подразделении работают три налоговых инспектора. В результате расчетов, формулы для которых мы рассмотрим ниже, обнаружена следующая зависимость между числом инспекторов и временем ожидания обслуживания.
Число инспекторов 1 2 3 4 5 6 7
Среднее время ожидания 80.2 50.3 34.9 24.8 14.912.9 9.4
______(минуты) _______________________________________
Приведенные данные свидетельствуют о том, что при работающих в настоящее время трех инспекторах среднее время ожидания обслуживания примерно равно 35 минут. По мнению посетителей, приемлемо было бы 15 минут ожидания. Как следует из этих же данных, среднее время ожидания становится меньше 15 минут, если число инспекторов больше или равно пяти.
Результаты исследования системы обслуживания также можно использовать для оптимизации модели со стоимостными характеристиками, в которой минимизируется сумма затрат, связанных с предоставлением услуг, и потерь, обусловленных задержками в их предоставлении. На рис. 2.6.1 изображена типичная стоимостная модель системы обслуживания, где затраты на обслуживание возрастают с ростом его уровня. В то же время потери, обусловленные задержками в предоставлении услуг, уменьшаются с возрастанием уровня обслуживания.
Уровень обслуживания
Главной проблемой, связанной с применением стоимостных моделей, является трудность оценки потерь в единицу времени, обусловленных задержками в предоставлении услуг.
Задачи массового обслуживания возникают в том случае, когда заявки на обслуживание (или требования ) не могут быть выполнены в силу занятости обслуживающего персонала (оборудования) или сама обслуживающая система оказывается бездействующей в силу отсутствия заявок. При моделировании данных задач используются фундаментальные понятия теории вероятности, т.к. случайными оказываются поток требований или длительность времени обслуживания, или и то и другое. При решении этих задач приходится определять либо оптимальное число обслуживающих каналов, либо оптимальную скорость потока (или находить моменты поступления заявок).
Класс моделей, пригодных для решения подобных задач, называют еще теорией очередей.
Эта теория представляет особый раздел теории случайных процессов и использует, в основном, аппарат теории вероятностей. Первые публикации в этой области относятся к 20-м гг. XX в. и принадлежат датчанину А. Эрлангу, занимавшемуся исследованиями функционирования телефонных станций – типичных СМО, где случайны моменты вызова, факт занятости абонента или всех каналов, продолжительность разговора. В дальнейшем теория очередей нашла развитие в работах К.Пальма, Ф.Поллачека, А.Я.Хинчина, Б.В.Гнеденко, А.Кофмана, Р.Крюона, Т. Cаати и других отечественных и зарубежных математиков.
При решении задач, связанных с очередями, возможны две ситуации:
а) число заказов слишком велико; имеет место большое время ожидания (недостаточный объем обслуживающего оборудования );
б) поступает недостаточное число заказов; имеет место простой оборудования (избыток оборудования ).
Необходимо найти оптимальное соотношение между потерями, вызванными простоем оборудования, и потерями из-за ожидания.
В качестве основных элементов СМО следует выделить входной поток заявок, очередь на обслуживание, cистему (механизм) обслуживания и выходящий поток заявок. В роли заявок (требований, вызовов) могут выступать покупатели в магазине, телефонные вызовы, поезда при подходе к железнодорожному узлу, вагоны под разгрузкой, автомашины на станции техобслуживания, самолеты в ожидании разрешения на взлет, штабель бревен при погрузке на автотранспорт. Роль обслуживающих приборов (каналов, линий) играют продавцы или кассиры в магазине, таможенники, пожарные машины, взлетно-посадочные полосы, экзаменаторы, ремонтные бригады.
По характеру случайного процесса, происходящего в СМО, различают системы марковские и немарковские.
Случайный процесс называется марковским , если для любого момента времени t вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t и не зависят от того, когда и как система пришла в это состояние. Рассмотренные ниже модели относятся к марковским системам.
В случае немарковских процессов задачи исследования СМО значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.
Проблема очередей - одна из наиболее острых для многих организаций. Люди каждый день стоят в очередях у кассы в продуктовом магазине или у театральной кассы, сидят в ожидании приема у врача, в приемной комиссии вузов или в бюро занятости населения. Модель теории очередей позволяет, повысив эффективность работы организации, уменьшить очереди и подсчитать время ожидания в очереди и приблизительные убытки, которые несет организация из-за наличия очередей. Модель может быть полезна при решении самых разных проблем: менеджерам авиакомпаний (самолеты приземляются и обслуживаются в порядке очереди), работникам магазинов (очереди у кассы), директорам заводов (этапы прохождения сырья через различные производственные циклы), работникам медицинских учреждений (контроль оборачиваемости койко-мест).
Существует большое количество моделей теории очередей из-за необходимости описывать различные ситуации очередей. Очереди при «обслуживании одиночнъос требований», т.е. когда обслуживание происходит в одной точке, бывают, например, у стойки кассира в ресторане или у единственного операционного окна на почте. Очереди при «обслуживании многочисленных требований» наблюдаются, например, на той же почте при одновременном обслуживании несколькими операторами одной очереди.
Ситуации с очередями становятся более сложными при наличии большого количества очередей и большого количества служащих (как в супермаркете) либо когда люди или организационные единицы, нуждающиеся в обслуживании, должны пройти через несколько точек обслуживания (что типично, например, при получении водительских прав).
Выделяют четыре основных типа очередей, схемы которых приведены на рис. 6.15.
Очередь у врачебного кабинета представляет хороший пример одно- каналъной однофазовой очереди. Очередь только одна - существует только один канал обслуживания; врач только один - существует только одна зона обслуживания. Пациенты ожидают приема и допускаются к врачу в соответствии со временем, указанном в талончике.
Ожидание у кассы в продовольственном магазине - типичный пример многоканальной однофазовой очереди.
Примером одноканальной многофазовой очереди служит очередь на мойке автомобилей. Машины стоят в одной очереди, но проходят несколько фаз обслуживания: мойка, ополаскивание, сушка и полировка.
Рис. 6.15.
а - одноканальная; б - многоканальная однофазовая очередь; в - одноканальная многофазовая очередь; г - многоканальная многофазовая очередь
Примеры многофазовых многоканальных очередей в изобилии встречаются на производстве, где выпускается несколько видов продукции. Количество каналов, как правило, соответствует количеству выпускаемых наименований продукции, а количество фаз определяется количеством технологических операций от начала до конца производства.
В отличие от линейного программирования, модель теории очередей, или модель массового обслуживания, не обеспечивает оптимального решения. Более того, модели позволяют менеджерам разнообразить параметры ситуаций и определять возможные последствия.
Например, представьте себя менеджером банка, где есть четыре кассира, которые обслуживают клиентов, заключающих сделки. У каждого из четырех окон существует отдельная очередь. Клиенты всегда склонны выбирать самую короткую очередь. Однако часто случается так, что самая короткая очередь оказывается самой медленной, из-за того что с кем-то в ее начале проводят операцию, требующую длительного времени. Банк обеспокоен тем, что клиенты раздражаются, когда они задерживаются в длинной очереди; от коллег из других банков вы узнаете, что они установили системы, в которых все машины по обработке заявок ожидают в единой очереди, поэтому каждый следующий клиент из очереди направляется к первому освободившемуся окну.
При изучение ситуации оказывается, что клиенты прибывают в среднем со скоростью 16 человек в час, а каждый кассир справляется со сделками со средней скоростью 8 сделок за час.
В этом случае вы могли бы использовать модели теории очередей в качестве помощи, для того чтобы оценить разницу во времени ожидания в действующей системе и в альтернативной системе единой очереди для всех клиентов. Предположим, что анализ модели теории очередей показал, что клиентам приходится ждать обслуживания в среднем 7,5 минут в условиях существующей системы, но они бы ждали в среднем только 0,654 минуты в единой очереди для всех клиентов, и тогда вы, возможно, захотите изменить существующий порядок в целях достижения значительных улучшений в обслуживании. Таким образом, хотя модели теории очередей не подсказывают оптимального решения, они предоставляют данные, необходимые менеджерам для планирования наиболее эффективного обслуживания клиентов и покупателей. Модели теории очередей являются дорогими, если их разрабатывать для уникальных и сложных ситуаций. Однако существующее разнообразие моделей соответствует многим ситуациям, которыми могут заинтересоваться менеджеры. Возрастающее количество таких моделей в пакетах программного обеспечения делает их использование экономнее и проще. Приведем пример, позволяющий понять, каким образом производятся расчеты матрицы массового обслуживания.
Администратор универсама должен обеспечить работу необходимого количества кассиров. Это количество определяется двумя факторами:
- убытками, которые несет универсам вследствие оплаты простоя кассиров из-за отсутствия покупателей;
- убытками от потери клиентов из-за долгого ожидания в очередях.
Задача администратора сводится к тому, чтобы минимизировать
убытки как в первом, так и во втором случае. Иначе говоря, администратору нужно добиться самых коротких очередей при минимальном числе работающих кассиров. Он посчитал, что универсам не теряет ни одного клиента в течение первых четырех минут ожидания в очереди. Каждая дополнительная минута обходится универсаму в 10 долларов, так как покупатели устают ждать и покидают магазин. Затем он высчитал, сколько времени покупатели будут стоять в очереди при условии одновременной работы одного, двух, трех и четырех кассиров, а также стоимость работы кассиров. Результаты этих вычислений приведены в табл. 6.5. Подсчитав стоимость каждого варианта, администратор выбирает самый дешевый. Как видно из таблицы, работа одного кассира стоит дешевле, чем работа двух, но работа четырех кассиров обходится магазину дешевле всего.
Описанная ситуация относится к разряду самых простых, в которых может применяться модель массового обслуживания. Вычисления администратора были бы более сложными, если бы он принимал во внимание разницу в покупательских потоках (в часы пик и в спокойные часы) и разницу в оплате труда кассиров при найме на неполный рабочий день. Тем не менее, даже на таком простом примере можно понять полезность использования модели массового обслуживания.
Таблица 6.5
Расчет альтернативных издержек при моделировании массового обслуживания
Теория массового обслуживания (теория очередей)
Модель теории очередей используется для определения оптимального числа каналов обслуживания по отношению к потребности в них. К ситуациям, в которых модели теории очередей могут быть полезны, можно отнести звонки людей через телефонную станцию, выход в Интернет через провайдера, обслуживание покупателей в магазине или банке, разгрузка грузовиков на транспортном терминале. В любом случае принципиальная проблема заключается в уравновешивании расходов на дополнительные каналы обслуживания (больше оборудования на АТС, больше модемов у провайдера, больше кассиров и клерков, больше людей и техники для разгрузки грузовиков) и потерь от обслуживания на уровне ниже оптимального (потребители обращаются к другой компании, грузовики стоят под разгрузкой вместо использования их по прямому назначению).
Управление запасами
Модели управления запасами используется для определения времени размещения заказов на ресурсы и их количества, а также массы готовой продукции на складах. Любая организация должна поддерживать некоторый уровень запасов во избежание задержек на производстве и в сбыте. Цель данной модели - сведение к минимуму отрицательных последствий накопления запасов, что выражается в определенных издержках.
Поддержание высокого уровня запасов избавляет от потерь, обусловливаемых их нехваткой. Закупка в больших количествах материалов, необходимых для создания запасов, во многих случаях сводит к минимуму издержки на размещение заказов, поскольку фирма может получить соответствующие скидки и снизить объем «бумажной работы». Однако эти потенциальные выгоды перекрываются дополнительными издержками типа расходов на хранение, перегрузку, затрат на страхование, потерь от порчи, воровства и дополнительных налогов. Кроме того, руководство должно учитывать возможность связывания оборотных средств избыточными запасами, что препятствует вложению капитала в приносящие прибыль акции, облигации и др.
Может быть выбрана одна из разновидностей моделей управления запасами: модель с фиксированным количеством, модель с фиксированным временем и др.
Сетевое планирование
Модели сетевого планирования используются при управлении сложными многоэтапными проектами (строительство здания, разработка нового продукта и т.п.) Методы сетевого планирования позволяют оптимизировать выполнение проекта, определить и улучшить характеристики его критических этапов и т.п.
Имитационное моделирование
Все описанные выше модели подразумевают применение имитации в широком смысле, поскольку все они являются заменителями реальности. В узком смысле, имитация состоит в использовании некоего устройства для имитации реальной системы для того, чтобы исследовать и понять ее свойства, поведение и характеристики. Имитация используется в ситуациях, слишком сложных для математически методов типа линейного программирования. Это может быть связано с чрезмерно большим числом переменных, трудностью математического анализа определенных зависимостей между переменными или высоким уровнем неопределенности. Примером может служить метод Монте-Карло .
Экономический анализ
Экономический анализ вбирает в себя почти все методы оценки издержек и экономических выгод, а также относительной рентабельности деятельности предприятия. Типичная экономическая модель основана на анализе безубыточности , методе принятия решений с определением точки (объема производства), в которой общий доход уравнивается с суммарными издержками, т.е. точки, начиная с которой предприятие становится прибыльным. Точка безубыточности (break-even point - BEP) определяется делением постоянных издержек на цену единицы продукции за вычетом переменных издержек на ее изготовление (данная формула может применяться в простейшем линейном случае).
Метод дерева решений
Дерево решений - схематичное представление проблемы принятия решений. Дерево решений дает руководителю возможность учесть различные направления действий, соотнести с ними финансовые результаты, скорректировать их в соответствии с приписанной им вероятностью, а затем сравнить альтернативы.
см. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ.
- - теория математических моделей принятия оптимальных решений в условиях конфликтов. Формальное определение игры. Под конфликтом понимают явление, применительно к к-рому можно говорить, кто и как в этом явлении...
Математическая энциклопедия
- - раздел теории массового обслуживания, где изучаются системы, в к-рых требования, застающие систему занятой, не теряются, а ожидают её освобождения и затем обслуживаются в том или ином порядке...
- - раздел математики и статистики в котором по данным вероятностям одних случайных событий, находят вероятности других случайных событий, связанных каким-либо образом с первыми...
Физическая Антропология. Иллюстрированный толковый словарь
- - одна из психофизических теорий, предложенная амер. ученым Р. Д. Люсом. В основу Т. д. с. положен пороговый принцип: раздражитель может оказаться либо надпороговым, либо подпороговым...
Большая психологическая энциклопедия
- - раздел математики, в к-ром изучаются математические модели принятия оптимальныхрешенийвусловиях конфликта...
Криминалистическая энциклопедия
- - см. Массового обслуживания теория...
- - англ. game theory; нем. Spieltheorie. Матем. теория, изучающая закономерности конфликтных ситуаций и разрабатывающая методы оптимизации соц. поведения. см. КИБЕРНЕТИКА, РИСК, ПРИНЯТИЕ РЕШЕНИЙ...
Энциклопедия социологии
- - раздел математики, в котором изучаются математические модели принятия оптимальных решений в условиях конфликта, т. е. при явлении, в котором участвуют различные стороны, наделенные различными возможностями...
Политология. Словарь.
- - раздел математики, предметом которого является анализ принятия оптимальных решений в условиях конфликта...
Энциклопедия Кольера
-
Естествознание. Энциклопедический словарь
- - раздел математики, в к-ром изучаются матем. модели принятия оптим...
Большой энциклопедический политехнический словарь
- - М.т.о. или модель оптимального обслуживания используется для определения оптимального числа каналов обслуживания по отношению к потребности в них. К ситуациям, в которых М.т.о. могут быть полезны, можно...
Большой экономический словарь
- - см. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ...
Большой экономический словарь
- - "...1...
Официальная терминология
- - раздел массового обслуживания теории. О. т. изучает системы, в которых требования, застающие систему занятой, не теряются, а ожидают её освобождения и затем обслуживаются в том или ином порядке...
Большая Советская энциклопедия
- - в математике - раздел теории массового обслуживания, где изучаются системы, в которых требования, застающие систему занятой, не теряются, а ожидают ее освобождения и затем обслуживаются в том или ином порядке...
Большой энциклопедический словарь
"ТЕОРИЯ ОЧЕРЕДЕЙ" в книгах
Счастливейшая из очередей
Из книги Свет во мраке автора Беляев Владимир ПавловичСчастливейшая из очередей Одним из первых занимает место в очереди к регистраторше донецкий шахтёр, разведчик Красной Армии и бывший пленник гитлеровцев Толя. На нём нарядный пиджак, одолженный у своего родственника Буженяка, длинные брюки, пёстрый галстук. Рядом -
Без очередей
Из книги 5. Командировки в Минск 1982-1985 гг. автора Юрков Владимир ВладимировичБез очередей Еще один момент, связанный с магазинами это - отсутствие очередей! Что мне, москвичу, было ужасно непривычно. Как будто бы попал в другую страну, что, собственно говоря, и было. Но страна эта считалась советской, хотя не все советские "ценности" в ней
Из книги Гражданский кодекс РФ автора ГАРАНТНастройка очередей обработки вызовов (Queues)
Из книги автораНастройка очередей обработки вызовов (Queues) Elastix позволяет создавать очереди обработки вызовов (Queues), являющихся основой Центров обработки вызовов (Call Centres). При помощи дополнительных приложений можно анализировать качество
Очередей теория
Из книги Большая Советская Энциклопедия (ОЧ) автора БСЭПример: использование очередей в многоступенчатом конвейере
Из книги Системное программирование в среде Windows автора Харт Джонсон МПример: использование очередей в многоступенчатом
Реализация очередей отложенных действий
автора Лав РобертРеализация очередей отложенных действий В своей наиболее общей форме подсистема очередей отложенных действий - это интерфейс для создания потоков пространства ядра, которые выполняют некоторые действия, где-то поставленные в очередь. Эти потоки ядра называются
Использование очередей отложенных действий
Из книги Разработка ядра Linux автора Лав РобертИспользование очередей отложенных действий Использовать очереди действий просто. Сначала мы рассмотрим рабочие потоки, используемые по умолчанию, - events, а затем опишем создание новых типов рабочих потоков.Создание отложенных действийПервый этап - это создание самого
Старый механизм очередей заданий
Из книги Разработка ядра Linux автора Лав РобертСтарый механизм очередей заданий Так же как и в случае интерфейса BH, который дал начало интерфейсам отложенных прерываний (softirq) и тасклетов (tasklet), интерфейс очередей действий возник благодаря недостаткам интерфейса очередей заданий (task queue). Интерфейс очередей заданий
5.5. Ограничения очередей сообщений
автора Стивенс Уильям Ричард5.5. Ограничения очередей сообщений Мы уже сталкивались с двумя ограничениями, устанавливаемыми для любой очереди в момент ее создания:? mq_maxmsg - максимальное количество сообщений в очереди;? mq_msgsize - максимальный размер сообщения.Не существует каких-либо ограничений на
Измерение задержки очередей сообщений System V
Из книги UNIX: взаимодействие процессов автора Стивенс Уильям РичардИзмерение задержки очередей сообщений System V В листинге А.16 приведен текст программы измерения времени задержки для очередей сообщений System V.Листинг А.16. Программа измерения времени задержки для очередей сообщений System V//bench/lat_svmsg.c1 #include "unpipc.h"2 struct msgbuf p2child = { 1, { 0 } }; /* type = 1
13.2.3. Предопределенные классы синхронизированных очередей
Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл7.10. Создание собственных диспетчерских очередей с помощью GCD
Из книги iOS. Приемы программирования автора Нахавандипур Вандад7.10. Создание собственных диспетчерских очередей с помощью GCD Постановка задачи Требуется создавать собственные диспетчерские очереди с уникальными
3. Содержательные теории мотивации: теория иерархии потребностей А. Маслоу; двухфакторная теория Ф. Герцберга; теория приобретенных потребностей МакКлелланда; теория ERG К… Альдерфера
Из книги Менеджмент: конспект лекций автора Дорофеева Л ИИзбегайте очередей
Из книги Великолепные мероприятия. Технологии и практика event management. автора Шумович Александр ВячеславовичИзбегайте очередей Это не всегда возможно, но нужно максимально подготовиться, чтобы очередей не было (конечно, если очередь не является частью вашего плана). Позаботьтесь о том, чтобы было достаточно регистраторов (не менее одного на 30 приглашенных при регистрации в