Обучающая презентация «Что умеют роботы» для детей старшего дошкольного возраста
Цель: познакомить детей с областями применения робототехники.
Задачи презентации
- Стимулировать мотивацию детей к получению знаний, помогать формировать творческую личность ребенка;
- Способствовать развитию интереса к технике, конструированию, программированию, высоким технологиям, развитию конструкторских, инженерных и вычислительных навыков;
- Развивать научно-технический и творческий потенциал личности дошкольника.
Ход презентации
Слайд 2.
Человек всегда стремился к новым открытиям и изобретениям. Раньше у людей не было одежды, они не умели строить дома, не было электричества и разного транспорта. Пищу готовили на огне и камнях, потому что не было посуды. Представьте, как бы сейчас жили люди, если бы не изобрели компьютеры и телефоны?
Слайд 3.
Каждый день учёные во всём мире совершают открытия, изобретают космические корабли, лекарства и роботов. А кто из вас знает, что умеют делать роботы? Первые роботы появились в конце XIX века — русский инженер Пафнутий Чебышёв придумал механизм — стопоход, обладающий высокой проходимостью.
Слайд 4.
Первую стопоходящую машину, созданную самим Чебышёвым, сегодня можно увидеть в Политехническом музее в Москве.
Слайд 5.
Современные роботы используются во всех отраслях — в освоении космоса, здравоохранении, общественной безопасности, развлекательных целях, обороне и многом другом. В некоторых областях роботы полностью заменили людей. Давайте познакомимся с ними поближе.
Слайд 6.
Роботы помогают людям с ограниченными возможностями здоровья вести обычный образ жизни. Учёные разработали бионические протезы (конечности, которыми можно управлять с помощью мышц и мозга.
Слайд 7.
Для одиноких пожилых людей учёные придумали роботов — внуков, с которыми можно поговорить, поиграть и даже сходить на прогулку.
Слайд 8.
В Японии роботы работаю официантами в кафе. Они принимают заказы, подают блюда и улыбаются клиентам.
Слайд 9.
Роботов используют для развлечения людей, создания лазерных шоу.
Слайд 10.
Робот — огнедышащий дракон развлекает детей и взрослых в национальном парке.
Слайд 11.
Но их основная задача — прийти на помощь в трудной ситауции. Роботов используют в местах повышенной опасности, чтобы избежать человеческих жертв. Вот, например робот-щит для полицейских.
Слайд 12.
Робот, который умеет тушить пожары управляется человеком, который находится далеко от опасного места и не пострадает от огня.
Слайд 13.
Роботов используют при расчистке завалов, в тех местах, куда человек не может попасть.
Слайд 14.
Роботы помогают вести видеосъёмку с высоты, из космоса.
Слайд 15.
На помощь военным так же приходят роботы. С ними можно тренироваться, отрабатывать боевые приёмы.
Слайд 16.
Роботы помогают людям совершать новые научные открытия. Их можно отправить даже на другую планету. Робот-рука помогает при стыковке космических аппаратов.
Слайд 17.
А такой робот на дне океана анализирует уровень загрязнения воды, количество кислорода и других элементов. Свою информацию он передаёт на поверхность и учёные планируют свою работу.
Слайд 18.
Роботы не боятся сильных морозов и могут работать там, где человек замёрзнет. Этот робот исследует поверхность в самых труднодоступных местах.
Слайд 19.
Роботы умеют делать почти всё, что и человек: перекладывать предметы, различать эмоции, дружить…
Слайд 20.
И даже выглядеть, как человек.
Слайд 21.
Роботы уже давно соседствуют с нами и делают жизнь человека интересной, полной новых знаний и открытий.
Робототехника применяется во многих отраслях по всему миру. Есть роботы как военного назначения, так и для медицинских исследований, как для освоения космоса, так и просто для развлечений. Японские разработчики, к примеру, в настоящее время создают роботов для оказания помощи пожилым людям, в то время как NASA разрабатывает новое поколение космических роботов-исследователей.
Идея искусственных созданий впервые упоминается в древнегреческом мифе о Кадме, который, убив дракона, разбросал его зубы по земле и запахал их, из зубов выросли солдаты, и в другом древнегреческом мифе о Пигмалионе, который вдохнул жизнь в созданную им статую Галатею. Также в мифе про Гефеста рассказывается, как он создал себе различных слуг. Еврейская легенда рассказывает о глиняном человеке Големе, который был оживлён пражским раввином Йехудом Бен Бецалелем (1509(?)-1609) при помощи каббалистической магии. Похожий миф излагается в скандинавском эпосе Младшая Эдда. Там рассказывается о глиняном гиганте Мисткалфе, созданном троллем Рунгнером для схватки с Тором, богом грома.
Для передвижения по открытой местности чаще всего используют колёсную или гусеничную (примерами подобных роботов могут служить Warrior и PackBot). Реже используются шагающие системы (примерами подобных роботов могут служить BigDog и Asimo). Для неровных поверхностей создаются гибридные конструкции, сочетающие колёсный или гусеничный ход со сложной кинематикой движения колёс. Такая конструкция была применена в луноходе. Внутри помещений, на промышленных объектах используются передвижения вдоль монорельсов, по напольной колее и т.д. Для перемещения по наклонным, вертикальным плоскостям используются системы, аналогичные «шагающим» конструкциям, но с вакуумными присосками. Также известны роботы, подражающие движениям живых организмов паукам, змеям, рыбам, птицам, морским скатам, насекомым и другим.
Коллежский советник Семён Николаевич Корсаков () ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного. В 1832 году С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации
В Японии не прекращаются разработки роботов, имеющих внешний вид, на первый взгляд неотличимый от человеческого. Развивается техника имитации эмоций и мимики «лица» роботов. В июне 2009 года ученые Токийского университета представили человекоподобного робота «KOBIAN», способного выражать свои эмоции счастье, страх, удивление, грусть, гнев, отвращение с помощью жестов и мимики. Робот способен открывать и закрывать глаза, двигать губами и бровями, использовать руки и ноги
Появление станков с числовым программным управлением привело к созданию программируемых манипуляторов для разнообразных операций по загрузке и разгрузке станков. Появление в 70-х гг. микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства. Несмотря на их высокую стоимость, численность промышленных роботов в странах с развитым производством быстро растёт. Основная причина массовой роботизации такова: «Роботы выполняют сложные производственные операции по 24 ч в сутки. Выпускаемая продукция при этом имеет высокое качество. Они... не болеют, не нуждаются в обеденном перерыве и отдыхе, не бастуют, не требуют повышения заработной платы и пенсии. Роботы не подвержены влиянию температуры окружающей среды либо воздействию газов или выбросов агрессивных веществ, опасных для жизни человека»
Боевой робот (военный робот) автоматическое устройство, заменяющее человека в боевых ситуациях для сохранения человеческой жизни или для работы в условиях, несовместимых с возможностями человека, в военных целях: разведка, боевые действия, разминирование и т. п. Боевыми роботами являются не только автоматические устройства с антропоморфным действием, которые частично или полностью заменяют человека, но и действующие в воздушной и водной среде, не являющейся средой обитания человека (авиационные беспилотные с дистанционным управлением, подводные аппараты и надводные корабли). Устройство может быть электромеханическим, пневматическ им,гидравлическим или комбинированным.
IRobot имеет компактные размеры и при этом бережно и качественно убирает помещения практически любой площади. Неважно, какие именно загрязнения имеются на полу – он справится с ними за короткое время.. Роботы-пылесосы прекрасно справляются с загрязнениями на различных поверхностях: коврах, ламинате, линолеуме, плитке и т.д. При этом он не повреждает обрабатываемые поверхности.
Талантливому американскому инженеру Дэниэлу Матиасу удалось разработать принципиально нового гуманоидного робота под название KATE. Аббревиатура расшифровывается как Детский обучающее-развлекательный аватар. Этот робот был создан таким образом, чтобы иметь возможность быть полезным буквально во всех сферах человеческой жизни – от помощи пожилым людям до обучения маленьких детей. KATE станет совершенно адаптабельной и универсальной платформой.
3 поколения роботов: Программные. Жестко заданная программа (циклограмма). Адаптивные. Возможность автоматически перепрограммироваться (адаптироваться) в зависимости от обстановки. Изначально задаются лишь основы программы действий. Интеллектуальные. Задание вводится в общей форме, а сам робот обладает возможностью принимать решения или планировать свои действия в распознаваемой им неопределенной или сложной обстановке. Робот – это машина с антропоморфным (человекоподобным) поведением, которая частично или полностью выполняет функции человека (иногда животного) при взаимодействии с окружающим миром
Домашние роботы 1.Ориентация и перемещение в ограниченном пространстве с меняющейся обстановкой (предметы в доме могут менять свое местоположение), открывание и закрывание дверей при перемещении по дому. 2.Манипулирование объектами сложной и иногда заранее неизвестной формы, например посудой на кухне или вещами в комнатах. 3.Активное взаимодействие с человеком на естественном языке и принятие команд в общей форме Задачи домашних интеллектуальных роботов: Mahru и Ahra (Корея, KIST)
Домашние роботы – STAIR (Стэнфорд) Stanford Artificial Intelligence Robot (STAIR) 10 профессоров, 30 аспирантов и студентов Начало работ – 2006 г. Манипулятор, лазерный дальномер, видеокамеры. В 2008 году STAIR уже умел самостоятельно находить двери и открывать их. На сегодняшний момент робот понимает голосовые команды типа «Принеси степлер», самостоятельно находит степлер среди других предметов в помещении, берет его манипулятором и приносит человеку, отдавшему команду. Это делает новый алгоритм, который позволяет "Ступеньке" узнавать знакомые особенности в незнакомых объектах и выбирать правильный захват.
Домашние роботы – PR2 (Willow Garage) Эта робототехническая платформа призвана помочь исследователям в том, чтобы не идти по сложному и дорогостоящему пути создания робота с нуля, а сосредоточить свои усилия на еще нерешенных проблемах. Робот демонстрирует свои возможности: самостоятельно находит, открывает и закрывает двери, закладывает и достает посуду в посудомоечную машину, а когда уровень заряда батареи становится слишком низким, самостоятельно вставляет штекер в розетку. Также робот может выполнять и достаточно тонкую работу, например, перелистывать страницы обычной книги. Personal Robot 2 (PR2) Вес 145 кг, туловище 4 степени свободы, голова 3 степени, 2 манипулятора по 8 степеней, 22 датчика давления на схватах. Открытая ОС для роботов (ROS)
Домашние роботы – PR2 (Willow Garage) PR2 умеет втыкать вилку в розетку Учёные из Калифорнийского университета в Беркли (UC Berkeley) впервые обучили робота взаимодействию с деформирующимися объектами. Как ни странно, но только сейчас удалось научить машину работать с мягкими и, главное, легко и непредсказуемо меняющими форму предметами.
Домашние роботы – Care-O-Bot Институт технологии машиностроения и автоматизации Фраунгофера (Fraunhofer IPA) Версия 3 (2008 г), начало работ – 1998 год Параметры робота: Высота - 1,45 метра, 60х60см, вес 150 кг Четыре ведущих управляемых колеса Управление – 3 PC Торс – 5 степеней свободы Рука – 7 степеней свободы Кисть – 7 степеней свободы Сенсорный экран - поднос Функции: перемещение по комнатам, объезд препятствий, открывание дверей, распознавание и захват предметов. Управление: с панели, речевое, распознавание жестов.
Беспилотные летательные аппараты (БПЛА) 32 страны мира производят около 250 типов беспилотных самолетов и вертолетов RQ-7 Shadow RQ-4 Global Hawk X47B UCAS A160T Hummingbird Беспилотники ВВС и армии США: 2000 г. – 50 единиц 2010 г. – 6800 единиц (136 раз) RQ-11 Raven В 2010 г. командование ВВС США впервые в своей истории намерено приобрести больше беспилотных аппаратов, нежели пилотируемых самолетов. К 2035 все вертолеты станут беспилотными. Рынок беспилотников: 2010 г. – 4.4 млрд. $ 2020 г. – 8.7 млрд. $ Доля США – 72% всего рынка
Наземные боевые роботы Транспортный робот BigDog (Boston Dinamics) Боевой робот MAARS Робот-сапер PackBot 1700 единиц на вооружении Робот-танк BlackKnight Выполняемые задачи: -разминирование -разведка -прокладка линий связи -транспортировка военных грузов -охрана территории
Морские роботы Подводный робот REMUS 100 (Hydroid) создано 200 экз. Выполняемые задачи: Обнаружение и уничтожение подлодок Патрулирование акватории Борьба с морскими пиратами Обнаружение и уничтожение мин Картография морского дна К 2020 г. в мире будет выпущено 1142 аппарата на общую сумму 2,3 млрд. долл., из которой 1,1 млрд. потратят военные. Произведено будет 394 крупных, 285 средних и 463 миниатюрных подводных устройства. В случае оптимистичного развития событий объем продаж достигнет 3,8 млрд. долл., а в штучном выражении 1870 роботов. катер ВМС США Protector
Промышленные роботы К 2010 г. в мире разработано более 270 моделей промышленных роботов, выпущено 1 млн. роботов В США внедрено 178 тысяч роботов В 2005 году в Японии работало 370 тысяч роботов - 40 процентов от общего количества во всем мире. На каждую тысячу заводских сотрудников-людей приходилось 32 робота К 2025 году из-за старения населения Японии 3,5 миллиона рабочих мест будет приходиться на роботов Современное высокоточное производство невозможно без использования роботов Россия в 90-е годы потеряла свой парк промышленных роботов. Массовое производство роботов отсутствует.
Роботы для игр Роботы-животныеРоботы-игрушки Робот-собака AIBO (Sony) г. Робот-динозавр PLEO Роботы-собаки
Роботы для медицины- xирургические роботы Робот-хирург Da Vinci Разработчик - INTUITIVE SURGICAL INC (USA) 2006 год – 140 клиник 2010 год – 860 клиник В России – 5 установок Оператор работает в нестерильной зоне у управляющей консоли. Инструментальные манипуляторы активизируются только в том случае, если голова оператора правильно позиционируется роботом. Используется 3D изображение операци- онного поля. Движения рук оператора аккуратно переносятся в очень точные движения операционных инструментов. Семь степеней свободы движения инструментов предоставляют оператору невиданные до сих пор возможности.
Роботы для медицины - тренажеры для врачей Робот-пациент STAN (США) Робот дышит и говорит. И многих студентов регулярно шокирует "смерть" манекена настолько он реалистичен. Используется в 370 госпиталях и медицинских школах. Робот для стоматологов Hanako (Япония) Она может изображать боль, закатывать глаза и даже пускать слюни. Кроме того, Hanako может общаться с врачом и говорить, например, «Мне больно».
Роботы для медицины - протезы Бионический протез руки i-Limb (Touch Bionics) удерживает до 90 килограммов нагрузки Серийно производится с 2008 г., 1200 пациентов по всему миру. Протез управляется миоэлектрическими токами в конечности, а для человека это выглядит почти как управление настоящей рукой. Вместе с "пульсирующим захватом" это позволяет инвалиду производить более точные манипуляции, вплоть до завязывания шнурков или застёгивания пояса.
Экзоскелеты (Япония) HAL-5, 23 кг, 1.6м 2.5 часа работы Усиливает силу от 2 до 10 раз Серийный выпуск с 2009 г. Адаптивная система управления, получая биоэлектрические сигналы, снимаемые с поверхности тела человека, вычисляет, какое именно движение и с какой мощностью собирается произвести человек. На основе этих данных рассчитывается уровень необходимой дополнительной мощности движения, которая будет сгенерирована сервоприводами экзоскелета. Быстродействие и реакция системы таковы, что мышцы человека и автоматизированные части экзоскелета двигаются совершенно в унисон. The Robot Suit Hybrid Assistive Limb (HAL) компания Cyberdyne
Экзоскелеты (Япония) Honda Walking assist – выпуск с 2009 г. вес – 6,5 килограмма (включая обувь и литиево-ионный аккумулятор), время работы на одной зарядке – 2 часа. Применение – для пожилых людей, облегчение труда рабочих на конвейере. Экзоскелет для фермера (Токийский университет сельского хозяйства и технологий)
Экзоскелеты (США) Универсальный грузовой экзоскелет HULC (Human Universal Load Carrier exoskeleton) компании Lockheed Martin Позволяет переносить до 90 кг груза на скорости до 15 км/ч. Питание – 72 часа от топливных элементов. Бортовой компьютер, контролирует группу сенсоров, установленных в разных частях устройства. Он помогает экзоскелету держать равновесие и правильно распределять усилия на гидравлические приводы. Компания Raytheon с 2000 года ведет работы над проектом роботизированного экзоскелета по заказу военных. Экзоскелет увеличивает силу сидящего внутри него человека в 20 раз! Питание пока только внешнее…
Экзоскелеты Компания Rex Bionics (Новая зеландия) создала экзоскелет Rex (сокращение от Robotic Exoskeleton) в расчёте на то, что он дополнит привычные инвалидные коляски: машина помогает ходить человеку, не способному самостоятельно даже стоять на ногах.Rex Bionics Российский армейский экзоскелет «Боец-21» работы по его созданию планируется завершить к 2015 году
Соревнования DARPA Urban Challenge ноября 2007 года в местечке Викторвилль (Victorville, Калифорния) Участвовало 23 команды 5 машин пришло к финишу Автомобили должны были преодолеть сложный городской маршрут: и всё полностью самостоятельно, без вмешательства человека. Победитель - машина Boss (построенная на основе Chevrolet Tahoe в университете Карнеги-Меллона) преодолела городскую дистанцию длиной около 90 километров за 4 часа. Средняя скорость составила примерно 22 километра в час. Использовался лазерный лидар – 64 лазера, 1 млн. точек/сек
Соревнования MAGIC 2010 Роботы должны исследовать окружающую среду, строить подробные карты местности, планировать маршруты и совместные действия, распознавать и классифицировать все потенциальные угрозы. В то время как дистанционно управляемые роботы уже используются в боевых условиях, мы нуждаемся в разумной, обладающей искусственным интеллектом и полностью автономной системе, которая будет способна превзойти человека в выполнении задач разведки и наблюдения, - подчеркнул заместитель министра обороны Австралии Грег Комбет. Международный турнир боевых роботов MAGIC 2010, организуемый Пентагоном, состоится в ноябре 2010 на юге Австралии. Отобрано 12 команд из 5 стран Австралии, Канады, США, Турции и Японии. Автономные наземные аппараты проявят себя в военных операциях и миссиях спасения в меняющейся городской обстановке.
Первые Международные Олимпийские Игры человекоподобных роботов Первые Международные Олимпийские Игры человекоподобных роботов Первые Международные Олимпийские Игры человекоподобных роботов (International Humanoid Robot Olympic Games) прошли в июне 2010 года на северо-востоке Китая в городе Харбин. Предполагалось участие около 100 университетов из 20 стран. К соревнованиям допущены исключительно андроиды в "человеческом виде": с двумя ногами и двумя руками. Никаких колёсных роботов. Машины соревновались в 16 "видах спорта", разбитых на пять категорий. В их числе лёгкая атлетика, игра с мячом, борьба и танцы. Кроме того, среди роботов определилась наилучшая домашняя прислуга (тут, к примеру, подразумеваются уборка и оказание медицинской помощи).
Футбол роботов Международная Федерация FIRA Ассоциация RoboCup: "Через 50 лет, в 2050 году, команда роботов- футболистов должна выиграть у Чемпиона мира по футболу (команды людей- футболистов)"
Соревнования EUROBOT Eurobot - крупнейшие ежегодные соревнования роботов в Европе (). Каждый год в них принимают участие сотни команд. Считается, что подобные соревнования позволяют превратить изучение сложной техники в увлекательную игру. В России соревнования Eurobot проводятся с 2007 года, в них принимают участие студенческие команды из различных ВУЗов.
Открытый робототехнический турнир на кубок Политехнического музея Политехнический музей (г. Москва) с 2009 года ежегодно проводит Открытый робототехнический турнир, в состав которого включены соревнования полностью автономных роботов. Последний турнир, прошедший в январе 2010 года стал самым крупным соревнованием такого рода, проходившим в России. В нем приняли участие более 400 участников, которые представили 138 роботов.
Тенденции развития В ближайшее десятилетие следует ожидать широкое распространение бытовых роботов. К 2025 году японский рынок роботов достигнет годового объема в 8 трлн. иен ($70 млрд.) Власти Южной Кореи поставили перед собой амбициозную цель: к 2020 году роботы должны быть в каждом доме. На сегодняшний день самыми известными корейскими человекоподобными машинами являются андроид HUBO и девушка-робот EveR. Представители службы национальной разведки США полагают, что к 2025 г. злоумышленники будут активно применять роботов к тому времени на рынке появится множество недорогих наземных и воздушных автономных устройств. В случае нарастания напряженности в мире полностью автономные боевые системы могут быть созданы уже в ближайшие лет (а может быть и раньше…). Существует потенциальная опасность утраты человеком контроля над применением средств поражения в результате принятия на вооружение полностью автономных боевых систем. Последнее, кстати, рассматривается Пентагоном в качестве одного из приоритетов.
- Учитель: Кривенцов Леонид Александрович,
- высшая квалификационная категория
- Тема урока:
- Асино - 2014
- Муниципальное автономное общеобразовательное учреждение –
- средняя общеобразовательная школа №4 город Асино Томской области
- (от робот и техника; англ. robotics) прикладная наука, занимающаяся разработкой автоматизированных технических систем.
- Робототехника опирается на такие дисциплины, как электроника, механика, информатика, радиотехника и электротехника.
- Строительная
- Промышленная
- Бытовая
- Авиационная
- Экстремальная
- Военная
- Космическая
- Подводная
- В основу слова «робототехника» легло слово «робот», придуманное в 1920 г. чешским писателем Карелом Чапеком для своей научно-фантастической пьесы «Р. У. Р.» («Россумские универсальные роботы»), впервые поставленной в 1921 г. в Праге и пользовавшейся успехом у зрителей.
- В ней хозяин завода налаживает выпуск множества андроидов, которые сначала работают без отдыха, но потом восстают и губят своих создателей.
- (чеш. robot, от robota - подневольный труд или rob - раб) - автоматическое устройство, созданное по принципу живого организма.
- Действуя по заранее заложенной программе и получая информацию о внешнем мире от датчиков (аналогов органов чувств живых организмов), робот самостоятельно осуществляет производственные и иные операции, обычно выполняемые человеком (либо животными).
- При этом робот может как и иметь связь с оператором (получать от него команды), так и действовать автономно.
- Андро́ид (от греч. корня ἀνδρ- слова ἀνήρ - «человек, мужчина» и суффикса -oid - от греч. слова εἶδος - «подобие») - человекоподобный.
- В современном значении обычно подразумевается человекоподобный робот.
- Манипуляционные
- Автоматическая машина, состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и устройства программного управления, которая служит для выполнения в производственном процессе двигательных и управляющих функций.
- Стационарные
- Передвижные
- Такие роботы производятся в напольном, подвесном и портальном исполнениях. Получили наибольшее распространение в машиностроительных и приборостроительных отраслях.
- Манипулятор - это механизм для управления пространственным положением орудий и объектов труда.
- Манипуляционные роботы
- поступательное движение
- угловое перемещение
- Виды движения
- Сочетание и взаимное расположение звеньев определяет степень подвижности, а также область действия манипуляционной системы робота.
- Для обеспечения движения в звеньях могут использоваться электрические, гидравлический или пневматический приводы.
- Манипуляционные роботы
- Частью манипуляторов (хотя и необязательной) являются захватные устройства. Наиболее универсальные захватные устройства аналогичны руке человека - захват осуществляется с помощью механических «пальцев».
- Для захвата плоских предметов используются захватные устройства с пневматической присоской.
- Для захвата множества однотипных деталей (что обычно и происходит при применении роботов в промышленности) применяют специализированные конструкции.
- Вместо захватных устройств манипулятор может быть оснащен рабочим инструментом. Это может быть пульверизатор, сварочная головка, отвёртка и т. д.
- Мобильные
- Автоматическая машина, в которой имеется движущееся шасси с автоматически управляемыми приводами.
- Колесные
- Шагающие
- Гусеничные
- Мобильные
- Ползающие
- Плавающие
- Летающие
- Вставить Видеофрагмент
- https://www.youtube.com/watch?time_continue=9&v=PC2hsu0jTbo
- ASIMO
- Асимо
- NAO (Нао)
- Вставить Видеофрагмент
- https://www.youtube.com/watch?v=Bmglbk_Op64
- NAO (Нао)
- Вставить Видеофрагмент
- https://www.youtube.com/watch?v=1W4LoQow_3o
- Приводы - это «мышцы» роботов. В настоящее время самыми популярными двигателями в приводах являются электрические, но применяются и другие, использующие химические вещества или сжатый воздух.
- Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинён вред.
- Робот должен повиноваться всем приказам, которые даёт человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.
- Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому и Второму Законам.
- Айзек Азимов, 1965
- В 1986 году в романе Роботы и Империя (англ. Robots and Empire) Азимов предложил Нулевой Закон:
- 0. Робот не может причинить вред человечеству или своим бездействием допустить, чтобы человечеству был причинён вред.
- 0. Робот не может причинить вреда человеку, если только он не докажет, что в конечном счёте это будет полезно для всего человечества.
- Материал взят из учебника - Е.И. Юревич, Основы робототехники.
- http://www.prorobot.ru/slovarik/robotics-zakon.php
- Фон презентации - http://sch1498.mskobr.ru/images/Kartinki/2.jpg
- Фото Карла Чапека - http://static.ozone.ru/multimedia/books_covers/1007573981.jpg
- Фото показа пьесы - http://1.bp.blogspot.com/-o_TRaM0uze8/U_xYIx3d-FI/AAAAAAAAAfA/4QxDeeX9ICc/s1600/chapek-rur-4ital.ru.jpg
- Фото NAO, колесного и гусеничного роботов – авторские
- Манипуляционные роботы - http://training-site.narod.ru/images/robot6.jpg, http://toolmonger.com/wp-content/uploads/2007/10/450_1002031%20kopia.jpg
- Плавающие роботы - https://images.cdn.stuff.tv/sites/stuff.tv/files/news/robot-water-snake_0.jpg
- Шагающий робот - http://weas-robotics.ru/wp-content/uploads/2013/09/mantis.jpg
- Робот-повар - http://bigpicture.ru/wp-content/uploads/2009/08/r12_1931.jpg
- Робот-скрипач - https://imzunnu.files.wordpress.com/2010/04/toyotaviolinplayingrobot.jpg
- Фото Айзека Азимова - https://ds04.infourok.ru/uploads/ex/0d01/000256f0-8256e822/3/hello_html_382bf8c1.jpg
- Приводы роботов - https://gizmod.ru/uploads/posts/2000/14172/image.jpg, http://www.servodroid.ru/_nw/0/62696.jpg
- Робот-лесоруб - http://www.strangedangers.com/images/content/136345.jpg
- Фото Aibo - http://img0.liveinternet.ru/images/attach/c/9/105/393/105393992_large_5361707_h_sAibo_img_0807.jpg
- Фото Asimo - https://everipedia-storage.s3.amazonaws.com/NewlinkFiles/1149050/4690442.jpg
Слово «робот» было придумано чешским писателем Карелом Чапеком и его братом Йозефом и впервые использовано в пьесе Чапека «Р.У.Р.» («Россумские универсальные роботы», 1921).
Роботы Чапека были не механическими, а биологическими существами. Просто у них отсутствовали некоторые человеческие функции, в частности способность влюбляться, а значит и желание продолжать свой род.
Роботом называют автоматическое устройство, имеющее манипулятор механический аналог человеческой руки - и систему управления этим манипулятором.
Промышленный робот - автономное устройство, состоящее из механического манипулятора и перепрограммируемой системы управления, которое применяется для перемещения объектов в пространстве в различных производственных процессах.
Являются важными компонентами автоматизированных гибких производственных систем (ГПС), которые позволяют увеличить производительность труда.
Функциональная схема промышленного робота
В составе робота есть механическая часть и система управления этой механической частью, которая в свою очередь получает сигналы от сенсорной части. Механическая часть робота делится на манипуляционную систему и систему передвижения.
Манипулятор - это механизм для управления пространственным положением орудий и объектов труда.
Манипуляторы включают в себя подвижные звенья двух типов:
- звенья, обеспечивающие поступательные движения
- звенья, обеспечивающие угловые перемещения
Сочетание и взаимное расположение звеньев определяет степень подвижности, а также область действия манипуляционной системы робота.
Для обеспечения движения в звеньях могут использоваться электрические, гидравлический или пневматический привод.
Частью манипуляторов (хотя и необязательной) являются захватные устройства. Вместо захватных устройств манипулятор может быть оснащен рабочим инструментом. Это может быть пульверизатор, сварочная головка, отвёртка и т. д.
Управление
Управление бывает нескольких типов:
- Программное управление - самый простой тип системы управления, используется для управления манипуляторами на промышленных объектах. В таких роботах отсутствует сенсорная часть, все действия жёстко фиксированы и регулярно повторяются. Для программирования таких роботов могут применяться среды программирования типа VxWorks/Eclipse или языки программирования например Forth, Оберон, Компонентный Паскаль, Си. В качестве аппаратного обеспечения обычно используются промышленные компьютеры в мобильном исполнении PC/104 реже MicroPC. Может происходить с помощью ПК или программируемого логического контроллера.
- Адаптивное управление - роботы с адаптивной системой управления оснащены сенсорной частью. Сигналы, передаваемые датчиками, анализируются и в зависимости от результатов принимается решение о дальнейших действиях, переходе к следующей стадии действий и т. д.
- Основанное на методах искусственного интеллекта.
- Управление человеком (например, дистанционное управление).
Современные роботы функционируют на основе принципов обратной связи, подчинённого управления и иерархичности системы управления роботом.
Действия промышленного робота
- перемещение деталей и заготовок от станка к станку или от станка к системам сменных палет;
- сварка швов и точечная сварка;
- покраска;
- выполнение операций резанья с движением инструмента по сложной траектории.
Достоинства использования
- остаточно быстрая окупаемость
- исключение влияния человеческого фактора на конвейерных производствах, а также при проведении монотонных работ, требующих высокой точности;
- повышение точности выполнения технологических операций и, как следствие, улучшение качества;
- возможность использования технологического оборудования в три смены, 365 дней в году;
- рациональность использования производственных помещений;
- исключение воздействия вредных факторов на персонал на производствах с повышенной опасностью;
Робот-спасатель токийского управления пожарной безопасности загружает на себя "жертву" в ходе антитеррористических учений.
Робот-охранник Т-34 с дистанционным управлением обездвиживает "злоумышленника"
Посетители выставки CeBIT-2009 в Ганновере, Германия наблюдают за тем, как робот Rollin" Justin готовит чай
Промышленные роботы на иранском автомобильном заводе Ходро участвуют в производстве автомобиля марки "Samand